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1. INTRODUCTION 
 

We deal in this paper, with an 
approximation operator linear positive, namely 
Szasz-Inverse Beta operator, which is a   
mixed summation-integral type operator and 
we give an estimate, in the terms of     
modulus of continuity, of the difference 
between this operator and the Szasz-Mirakjan 
operator. 

 
2. PROBABILISTIC REPRESENTATION 

OF SOME OPERATORS 
 
In our paper [1] we consider a probabilistic 

representation of the Szasz - Inverse Beta 
operators, which were defined and 
investigated by V. Gupta, M.A. Noor, [4] and 
iterative constructions of these operators were 
studied recently by Z. Finta, N.K. Govil,       
V. Gupta [3] : 
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with  a standard Poisson process 
and  two mutually 
independent Gamma processes defined all on 
the same probability space.  

{ 0t:)t(N ≥ }
}{ } { 0t:V,0t:U tt ≥≥

Note that, the Poisson process is a 
stochastic process starting at the origin, having 
stationary independent increments with 
probability: 
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and the Gamma process is a stochastic process 
starting at the origin , having 
stationary independent increments and such 
that, for t > 0, U

)0U( 0 =

t has the Gamma probability 
density function: 
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and without loss of generality [5] it can 
assumed that { } and  for 
each t > 0 have a.s. no decreasing right- 
continuous paths. 
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On these operators it is know, that: 
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the Inverse-Beta operators or the Stancu’s 
operators of second kind [6] having 
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Using the classical estimate for the linear 
positive operators: 
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The well known Szasz-Mirakjan’s 
operators: 
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Using  our paper [1, Th.3.2] and a result of 
De la Cal, J., Carcamo J., [2 ] we have for all 
convex functions in the domain of these 
operators L  that,  [ )∞,0cx
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For this, in the next section we give an 
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(9) for the Szasz-Inverse Beta operators, the 

estimate (11) for the Inverse-Beta operators 
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Using the probabilistic representation (6), 
(13) of these operators, we can to give an 
estimate  with  the  aid  of  the  variances  of  the 
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