AN ESTIMATE OF DIFFERENCE BETWEEN THE SZASZ - INVERSE
 BETA OPERATORS AND THE SZASZ - MIRAKJAN OPERATORS

Cristina CISMAŞIU
"Transilvania" University of Brasov, Romania

Abstract

In this paper we give an estimate of difference between the Szasz-Inverse Beta operators and the Szasz-Mirakjan operators.

Mathematics Subject Classifications 2010: 41A35, 41A36, 41A25,42A61.
Keywords: Szasz-Inverse Beta operators, Szasz-Mirakjan operators, Inverse Beta operators, estimate.

1. INTRODUCTION

We deal in this paper, with an approximation operator linear positive, namely Szasz-Inverse Beta operator, which is a mixed summation-integral type operator and we give an estimate, in the terms of modulus of continuity, of the difference between this operator and the Szasz-Mirakjan operator.

2. PROBABILISTIC REPRESENTATION OF SOME OPERATORS

In our paper [1] we consider a probabilistic representation of the Szasz - Inverse Beta operators, which were defined and investigated by V. Gupta, M.A. Noor, [4] and iterative constructions of these operators were studied recently by Z. Finta, N.K. Govil, V. Gupta [3] :

$$
\begin{align*}
& L_{t}(f ; x)= \\
& =e^{-t x} f(0)+\sum_{k=1}^{\infty} s_{t, k}(x) \int_{0}^{\infty} b_{t, k}(u) f(u) d u= \\
& =\int_{0}^{\infty} J_{t}(u ; x) f(u) d u, \quad x \geq 0 \tag{1}
\end{align*}
$$

with

$$
\begin{align*}
& s_{t, k}(x)=e^{-t x} \frac{(t k)^{k}}{k!} \tag{2}\\
& t>0, x \geq 0, k \in N \cup\{0\} \\
& b_{t, k}(u)=\frac{1}{B(k, t+1)} \cdot \frac{u^{k-1}}{(1+u)^{t+k+1}} \tag{3}\\
& u>0, t>0 \\
& B(k, t+1)=\int_{0}^{\infty} \frac{u^{k-1}}{(1+u)^{t+k+1}} d u \tag{4}
\end{align*}
$$

being Inverse- Beta function,

$$
\begin{equation*}
\mathrm{J}_{\mathrm{t}}(\mathrm{u} ; \mathrm{x})=\mathrm{e}^{-\mathrm{tx}} \delta(\mathrm{u})+\sum_{\mathrm{k}=1}^{\infty} \mathrm{s}_{\mathrm{t}, \mathrm{k}}(\mathrm{~s}) \mathrm{b}_{\mathrm{t}, \mathrm{k}}(\mathrm{u}) \tag{5}
\end{equation*}
$$

$\delta(\mathrm{u})$ being the Dirac's delta function, for which $\int_{0}^{\infty} \delta(u) f(u) d u=f(0)$.

So, these operators are represented as, the mean value of the random variable $\frac{\mathrm{U}_{\mathrm{N}(\mathrm{t} x)}}{\mathrm{V}_{\mathrm{t}+1}}$ which has the probability density function $\mathrm{J}_{\mathrm{t}}(\mathrm{u} ; \mathrm{x})$ defined as (5) :

$$
\begin{align*}
& L_{t}(f ; x)=E\left[f\left(Z_{t x)}\right]=E\left[f\left(\frac{U_{N(t x)}}{V_{t+1}}\right)\right]\right. \tag{6}\\
& t>0, \quad x \geq 0
\end{align*}
$$

with $\{\mathrm{N}(\mathrm{t}): \mathrm{t} \geq 0\}$ a standard Poisson process and $\left\{\mathrm{U}_{\mathrm{t}}: \mathrm{t} \geq 0\right\},\left\{\mathrm{V}_{\mathrm{t}}: \mathrm{t} \geq 0\right\}$ two mutually independent Gamma processes defined all on the same probability space.

Note that, the Poisson process is a stochastic process starting at the origin, having stationary independent increments with probability:

$$
\begin{equation*}
\mathrm{P}(\mathrm{~N}(\mathrm{t})=\mathrm{k})=\frac{\mathrm{e}^{-\mathrm{t}} \mathrm{t}^{\mathrm{k}}}{\mathrm{k}!}, \mathrm{t} \geq 0, \mathrm{k} \in \mathrm{~N} \cup\{0\} \tag{7}
\end{equation*}
$$

and the Gamma process is a stochastic process starting at the origin $\left(\mathrm{U}_{0}=0\right)$, having stationary independent increments and such that, for $t>0, U_{t}$ has the Gamma probability density function:

$$
\mathrm{d}_{\mathrm{t}}(\mathrm{u})=\left\{\begin{array}{lc}
\frac{\mathrm{u}^{\mathrm{t}-1} \mathrm{e}^{-\mathrm{u}}}{\Gamma(\mathrm{t})}, & \mathrm{t}>0, \mathrm{u}>0 \tag{8}\\
0, & \mathrm{u} \leq 0
\end{array}\right.
$$

and without loss of generality [5] it can assumed that $\left\{\mathrm{U}_{\mathrm{t}}: \mathrm{t} \geq 0\right\}$ and $\left\{\mathrm{V}_{\mathrm{t}}: \mathrm{t} \geq 0\right\}$ for each $t>0$ have a.s. no decreasing rightcontinuous paths.

On these operators it is know, that:

$$
\begin{aligned}
& L_{t}\left(e_{i} ; x\right)=e_{i}(x), i=\overline{0,1}, x \geq 0 \\
& L_{t}\left(e_{2} ; x\right)=\frac{t}{t-1} x^{2}+\frac{2}{t-1} x, t>1, x \geq 0 \\
& L_{t}\left(e_{2}-x^{2} ; x\right)=L_{t}\left(\left(e_{1}-x\right)^{2} ; x\right)= \\
& =D^{2}\left[\frac{U_{N(t x)}}{V_{t+1}}\right]=E\left[\left(\frac{U_{N(t x)}}{V_{t+1}}-x\right)^{2}\right]= \\
& =\frac{x(2+x)}{t-1}, t>1, x \geq 0
\end{aligned}
$$

and

$$
\begin{align*}
& L_{t}(f ; x)=\left(S_{t} \circ T_{t}\right)(f ; x)=S_{t}\left(T_{t}\right)(f ; x), \\
& t>0, x \geq 0 \tag{9}
\end{align*}
$$

with

$$
\left\{\begin{array}{l}
T_{t}(f ; x)=\frac{1}{B(t x, t+1)} \int_{0}^{\infty} \frac{u^{t x-1}}{(1+u)^{t x+t+1}} f(u) d u \\
T_{t}(f ; 0)=f(0)
\end{array}\right.
$$

$$
\Rightarrow
$$

$$
\left\{\begin{array}{l}
\mathrm{T}_{\mathrm{t}}(\mathrm{f} ; \mathrm{x})=\int_{0}^{\infty} \mathrm{f}(\mathrm{u}) \mathrm{b}_{\mathrm{t} x, \mathrm{t}+1}(\mathrm{u}) \mathrm{du}, \mathrm{t}>0, \mathrm{x}>0 \tag{10}\\
\mathrm{~T}_{\mathrm{t}}(\mathrm{f} ; 0)=\mathrm{f}(0)
\end{array}\right.
$$

the Inverse-Beta operators or the Stancu's operators of second kind [6] having $b_{t x, t+1}(u)$ as (3).

The Inverse-Beta operators $\mathrm{T}_{\mathrm{t}}(\mathrm{f} ; \mathrm{x})$ preserve the affine functions on $[0, \infty)$:

$$
\begin{aligned}
& T_{t}\left(e_{0} ; x\right)=e_{0}(x)=1 \\
& T_{t}\left(e_{1} ; x\right)=e_{1}(x)=x \\
& T_{t}\left(e_{2} ; x\right)=x^{2}+\frac{x(x+1)}{t-1}, t>1
\end{aligned}
$$

Using the classical estimate for the linear positive operators:

$$
\begin{aligned}
& |(\mathrm{Lf})(\mathrm{x})-\mathrm{f}(\mathrm{x})| \leq \\
& \leq\left(1+\delta^{-2} \mathrm{~L}\left(\mathrm{e}_{1}-\mathrm{xe}_{0}\right)^{2}(\mathrm{x})\right) \omega(\mathrm{f} ; \delta), \\
& \mathrm{f} \in \mathrm{C}_{\mathrm{B}}(\mathrm{I}), \mathrm{I} \subset \mathrm{R}, \delta>0
\end{aligned}
$$

we have for these operators:

$$
\begin{align*}
& \left|T_{t}(f ; x)-f(x)\right| \leq\left(1+\delta^{-2} \frac{x(x+1)}{t-1}\right) \omega(f ; \delta), \\
& (\forall) f \in C_{B}[0,+\infty), t>1 \tag{11}
\end{align*}
$$

These operators can be probabilistic represented as the mean value of the random variable $f\left(W_{t x, t+1}\right)=f\left(\frac{U_{t x}}{V_{t+1}}\right)$, where $U_{t x}, V_{t+1}$ are two independent random variables, having Gamma distribution with density $\mathrm{d}_{\mathrm{tx}}(\mathrm{u})$ respectively $\mathrm{d}_{\mathrm{t}+1}(\mathrm{u})$ defined as (8):

$$
\left\{\begin{array}{l}
T_{t}(f ; x)=E\left[f\left(W_{t x, t+1}\right)\right]=E\left[f\left(\frac{U_{t x}}{V_{t+1}}\right)\right] \\
T_{t}(f ; 0)=f(0) \quad t>0, x>0
\end{array}\right.
$$

The well known Szasz-Mirakjan's operators:

$$
\begin{equation*}
S_{t}(f ; x)=\sum_{k=1}^{\infty} s_{t, k}(k) f\left(\frac{k}{t}\right) \tag{12}
\end{equation*}
$$

with $s_{t, k}(x)$ defined as (2) can be represented as the mean value of the random variable $f\left(\frac{N(t x)}{t}\right), t>0, x \geq 0$, where the random variable $N(t x)$ has the Poisson distribution and take the value k with probability $\mathrm{s}_{\mathrm{t}, \mathrm{k}}(\mathrm{x})$ as (2).

So, these operators:

$$
\begin{align*}
& S_{t}(f ; x)=E\left[f\left(\frac{N(t x)}{t}\right)\right], \\
& t>0, x \geq 0 \tag{13}
\end{align*}
$$

are well defined, if f is a real measurable function on $[0, \infty)$ such that:

$$
\mathrm{E}\left[\left|\mathrm{f}\left(\frac{\mathrm{~N}(\mathrm{t} \mathrm{x})}{\mathrm{t}}\right)\right|\right]<\infty \text { for each } \mathrm{t}>0
$$

and

$$
\begin{align*}
& S_{t}\left(e_{0} ; x\right)=e_{0}(x)=1 \\
& S_{t}\left(e_{1} ; x\right)=e_{1}(x)=E\left[\frac{N(t x)}{t}\right]=x \\
& S_{t}\left(e_{2} ; x\right)=E\left[\left(\frac{N(t x)}{t}\right)^{2}\right]=x^{2}+\frac{x}{t} \\
& t>0, x \geq 0 \tag{14}
\end{align*}
$$

Using our paper [1, Th.3.2] and a result of De la Cal, J., Carcamo J., [2] we have for all convex functions in the domain of these operators $\mathcal{L}_{\mathrm{cx}}[0, \infty)$ that,

$$
\begin{equation*}
L_{t} f \geq S_{t} f, f \in \mathcal{L}_{c x}[0, \infty) \tag{15}
\end{equation*}
$$

For this, in the next section we give an estimate for the difference $\left|L_{t}(f ; x)-S_{t}(f ; x)\right|$.

3. AN ESTIMATE OF DIFFERENCE

$$
\mathbf{L}_{\mathbf{t}}(\mathbf{f} ; \mathbf{x})-\mathbf{S}_{\mathbf{t}}(\mathbf{f} ; \mathbf{x})
$$

In view of (15) using the representation (9) for the Szasz-Inverse Beta operators, the
estimate (11) for the Inverse-Beta operators and the Szasz-Mirakjan`s properties (14) we have:

Theorem 3.1 If $\mathrm{f} \in \mathrm{C}_{\mathrm{B}}[0, \infty) \cap \mathcal{L}_{\mathrm{Cx}}[0,+\infty)$ then for every $\mathrm{x} \in[0,+\infty)$ and $\mathrm{t}>1$

$$
\begin{aligned}
& \left|L_{t}(f ; x)-S_{t}(f ; x)\right| \leq \\
& \leq\left(1+\delta^{-2}\left(\frac{x(x+1)}{t-1}+\frac{x}{t(t-1)}\right)\right) \omega(f ; \delta)
\end{aligned}
$$

Proof.

$$
\begin{aligned}
& \left|L_{t}(f ; x)-S_{t}(f ; x)\right|=\left|S_{t}\left(T_{t}(f ; x)\right)-S_{t}(f ; x)\right| \leq \\
& \quad \leq \sum_{k=1}^{\infty} s_{t, k}(x)\left|T_{t} f\left(\frac{k}{t}\right)-f\left(\frac{k}{t}\right)\right| \leq \\
& \quad \leq \sum_{k=1}^{\infty} s_{t, k}(x)\left(1+\delta^{-2} \frac{\frac{k}{t}\left(\frac{k}{t}+1\right)}{t-1}\right) \omega(f ; \delta) \leq
\end{aligned}
$$

$$
\leq \sum_{\mathrm{k}=1}^{\infty} \mathrm{e}^{-\mathrm{tx}} \frac{(\mathrm{tx})^{\mathrm{k}}}{\mathrm{k}!}\left(1+\delta^{-2} \frac{\mathrm{k}(\mathrm{k}+1)}{\mathrm{t}^{2}(\mathrm{t}-1)}\right) \omega(\mathrm{f} ; \delta) \leq
$$

$$
\leq\left(1+\frac{\delta^{-2}}{\mathrm{t}^{2}(\mathrm{t}-1)}\left((\mathrm{tx})^{2}+\mathrm{tx}+\mathrm{t}^{2} \mathrm{x}\right)\right) \omega(\mathrm{f} ; \delta)
$$

$$
\left|L_{t}(\mathrm{f} ; \mathrm{x})-\mathrm{S}_{\mathrm{t}}(\mathrm{f} ; \mathrm{x})\right| \leq
$$

$$
\leq\left(1+\delta^{-2}\left(\frac{\mathrm{x}(\mathrm{x}+1)}{\mathrm{t}-1}+\frac{\mathrm{x}}{\mathrm{t}(\mathrm{t}-1)}\right)\right) \omega(\mathrm{f} ; \delta)
$$

For

$$
\delta=\frac{1}{\sqrt{\mathrm{t}-1}}, \mathrm{t}>1, \mathrm{x} \geq 0, \mathrm{f} \in \mathrm{C}_{\mathrm{B}}[0,+\infty)
$$

we obtain

$$
\begin{aligned}
& \left|L_{t}(f ; x)-S_{t}(f ; x)\right| \leq \\
& \leq\left(1+\left(x(x+1)+\frac{x}{t}\right)\right) \omega\left(f ; \frac{1}{\sqrt{t-1}}\right)
\end{aligned}
$$

Using the probabilistic representation (6), (13) of these operators, we can to give an estimate with the aid of the variances of the
random variables $\frac{U_{t x}}{V_{t+1}}$ and $\frac{N(t x)}{t}$.
So that, result for $\mathrm{t}>1, \mathrm{x} \geq 0, \delta>0$

$$
\begin{aligned}
& \left\lvert\, E\left[f\left(\frac{U_{N(t x)}}{V_{t+1}}\right)\right]-E\left[f\left(\frac{N(t x)}{t}\right)\right] \leq\right. \\
& \leq\left(1+\delta^{-2}\left(D^{2}\left(\frac{U_{t x}}{V_{t+1}}\right)+\frac{1}{t-1} D^{2}\left(\frac{N(t x)}{t}\right)\right)\right) \\
& \cdot \omega(f ; \delta)
\end{aligned}
$$

4. CONCLUSIONS

This study is interesting because presents an estimate of a difference between the images of the same function with the aid of two different operators but one of them is a mixture of the other operator and another one.

REFERENCES

1. Cismasiu, C., Szasz-Inverse Beta Operators revisited, (to appear);
2. De la Cal, J., Carcamo, J., On the approximation of convex functions by Bernstein - type operators, J. Math. Anal. Appl., 334, (2007), pp. 1106-1115;
3. Finta, Z., Govil, N.K., Gupta, V., Some results on modified Szasz-Mirakjan operators, J. Math. Anal. Appl., 327 (2007), pp. 1284-1296;
4. Gupta, V., Noor, M.A., Convergence of derivatives for certain mixed Szasz-Beta operators, J. Math. Anal. Appl., 321 (1), (2006), pp. 1-9;
5. Skorohod, A.V., Random Processes with Independent Increments, Kluwer, London, 1986;
6. Stancu, D.D., On the Beta- approximating operators of second kind, Revue d'Analyse Num. et de Theorie de l'Approx., 24, No. 1-2, (1995), pp. 231-239.
